Search results for "AP site"

showing 10 items of 11 documents

AlkAniline-Seq: Profiling of m7 G and m3 C RNA Modifications at Single Nucleotide Resolution.

2018

RNA modifications play essential roles in gene expression regulation. Only seven out of >150 known RNA modifications are detectable transcriptome-wide by deep sequencing. Here we describe a new principle of RNAseq library preparation, which relies on a chemistry based positive enrichment of reads in the resulting libraries, and therefore leads to unprecedented signal-to-noise ratios. The proposed approach eschews conventional RNA sequencing chemistry and rather exploits the generation of abasic sites and subsequent aniline cleavage. The newly generated 5'-phosphates are used as unique entry for ligation of an adapter in library preparation. This positive selection, embodied in the AlkAnilin…

0301 basic medicineComputational biologyCatalysisDeep sequencing03 medical and health sciencesdeep sequencingAdapter (genetics)[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]Epitranscriptomicsabasic siteNucleotideAP siteComputingMilieux_MISCELLANEOUSchemistry.chemical_classificationRegulation of gene expressionChemistryRNA[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyGeneral ChemistryMethylationSciences bio-médicales et agricolesRNA modification3. Good health030104 developmental biologymethylationepitranscriptomics
researchProduct

Regulation of GC box activity by 8-oxoguanine

2021

The oxidation-induced DNA modification 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) was recently implicated in the activation and repression of gene transcription. We aimed at a systematic characterisation of the impacts of 8-oxodG on the activity of a GC box placed upstream from the RNA polymerase II core promoter. With the help of reporters carrying single synthetic 8-oxodG residues at four conserved G:C base pairs (underlined) within the 5′-TGGGCGGAGC-3′ GC box sequence, we identified two modes of interference of 8-oxodG with the promoter activity. Firstly, 8-oxodG in the purine-rich (but not in the pyrimidine-rich) strand caused direct impairment of transcriptional activation. In addit…

0301 basic medicineMedicine (General)GuanineDNA RepairQH301-705.5Clinical BiochemistryCAAT box8-OxoguanineRNA polymerase IIBiochemistryDNA GlycosylasesAP endonuclease03 medical and health sciencesR5-9200302 clinical medicineGene expressionDNA-(Apurinic or Apyrimidinic Site) LyaseAP siteBiology (General)AP lesionbiologyChemistryOrganic ChemistryPromoterBase excision repairMolecular biologyGC boxBase excision repair (BER)030104 developmental biologyDNA glycosylasebiology.protein8-Oxoguanine DNA Glycosylase (OGG1)030217 neurology & neurosurgeryResearch PaperDNA DamageRedox Biology
researchProduct

Phosphorylation of the DNA repair protein APE/REF-1 by CKII affects redox regulation of AP-1

1999

The DNA repair protein apurinic endonuclease (APE/Ref-1) exerts several physiological functions such as cleavage of apurinic/apyrimidinic sites and redox regulation of the transcription factor AP-1, whose activation is part of the cellular response to DNA damaging treatments. Here we demonstrate that APE/Ref-1 is phosphorylated by casein kinase II (CKII). This was shown for both the recombinant APE/Ref-1 protein (Km=0.55 mM) and for APE/Ref-1 expressed in COS cells. Phosphorylation of APE/Ref-1 did not alter the repair activity of the enzyme, whereas it stimulated its redox capability towards AP-1, thus promoting DNA binding activity of AP-1. Inhibition of CKII mediated phosphorylation of A…

Cancer ResearchDNA RepairProto-Oncogene Proteins c-junDNA repairDNA damageCarbon-Oxygen LyasesCHO CellsProtein Serine-Threonine KinasesBiologyTransfectionSubstrate SpecificityCricetinaeDNA Repair ProteinDNA-(Apurinic or Apyrimidinic Site) LyaseGeneticsAnimalsHumansAP sitePhosphorylationCasein Kinase IIProtein kinase AMolecular BiologyMethyl MethanesulfonateCyclic AMP-Dependent Protein KinasesMolecular biologyDNA-(apurinic or apyrimidinic site) lyaseTranscription Factor AP-1COS CellsPhosphorylationCasein kinase 2Oxidation-ReductionDNA DamageHeLa CellsMutagensOncogene
researchProduct

Nucleotide excision repair of abasic DNA lesions

2019

AbstractApurinic/apyrimidinic (AP) sites are a class of highly mutagenic and toxic DNA lesions arising in the genome from a number of exogenous and endogenous sources. Repair of AP lesions takes place predominantly by the base excision pathway (BER). However, among chemically heterogeneous AP lesions formed in DNA, some are resistant to the endonuclease APE1 and thus refractory to BER. Here, we employed two types of reporter constructs accommodating synthetic APE1-resistant AP lesions to investigate the auxiliary repair mechanisms in human cells. By combined analyses of recovery of the transcription rate and suppression of transcriptional mutagenesis at specifically positioned AP lesions, w…

DNA RepairTranscription GeneticDNA damageDNA repairGenome Integrity Repair and ReplicationGene Knockout Techniques03 medical and health sciencesEndonucleasechemistry.chemical_compoundTranscription (biology)CRISPR-Associated Protein 9DNA-(Apurinic or Apyrimidinic Site) LyaseGeneticsHumansAP siteCell Line TransformedSkin030304 developmental biologyGene Editing0303 health sciencesBase SequencebiologyGenome Human030302 biochemistry & molecular biologyDNABase excision repairFibroblastsMolecular biologyXeroderma Pigmentosum Group A ProteinDNA-Binding ProteinschemistryMutationbiology.proteinCRISPR-Cas SystemsDNADNA DamageProtein BindingNucleotide excision repairNucleic Acids Research
researchProduct

Excision of Uracil from Transcribed DNA Negatively Affects Gene Expression

2014

Uracil is an unavoidable aberrant base in DNA, the repair of which takes place by a highly efficient base excision repair mechanism. The removal of uracil from the genome requires a succession of intermediate products, including an abasic site and a single strand break, before the original DNA structure can be reconstituted. These repair intermediates are harmful for DNA replication and also interfere with transcription under cell-free conditions. However, their relevance for cellular transcription has not been proved. Here we investigated the influence of uracil incorporated into a reporter vector on gene expression in human cells. The expression constructs contained a single uracil opposi…

DNA RepairTranscription GeneticGreen Fluorescent ProteinsGene ExpressionDNA and ChromosomesBiologyBiochemistryCell LineDNA Glycosylaseschemistry.chemical_compoundGenes ReporterActivation-induced (cytidine) deaminaseHumansheterocyclic compoundsProtein–DNA interactionAP siteUracilUracil-DNA GlycosidaseMolecular BiologyUracilDNACell BiologyBase excision repairMolecular biologyThymine DNA GlycosylasechemistryDNA glycosylaseGene Knockdown TechniquesUracil-DNA glycosylasebiology.proteinHeLa CellsNucleotide excision repairJournal of Biological Chemistry
researchProduct

Mechanisms and consequences of methylating agent-induced SCEs and chromosomal aberrations: a long road traveled and still a far way to go.

2003

Since the milestone work of Evans and Scott, demonstrating the replication dependence of alkylation-induced aberrations, and Obe and Natarajan, pointing to the critical role of DNA double-strand breaks (DSBs) as the ultimate trigger of aberrations, the field has grown extensively. A notable example is the identification of DNA methylation lesions provoking chromosome breakage (clastogenic) effects, which made it possible to model clastogenic pathways evoked by genotoxins. Experiments with repair-deficient mutants and transgenic cell lines revealed both O<sup>6</sup>-methylguanine (O<sup>6</sup>MeG) and N- methylpurines as critical lesions. For S<sub>N</sub&g…

DNA ReplicationAlkylating AgentsGuanineDNA RepairDNA damageDNA repairBase Pair MismatchApoptosisBiologyMethylationLesionAnimals Genetically ModifiedMiceO(6)-Methylguanine-DNA MethyltransferaseCricetulusCricetinaeGeneticsmedicineAnimalsHumansPoint MutationAP siteMolecular BiologyGenetics (clinical)Chromosome AberrationsRecombination GeneticGuanosineModels GeneticCell CycleDNA replicationDNAFibroblastsMolecular biologyCell killingCell Transformation NeoplasticCancer researchDNA mismatch repairChromosome breakagemedicine.symptomSister Chromatid ExchangeDNA DamageMutagensCytogenetic and genome research
researchProduct

The Translesion Polymerase Rev3L in the Tolerance of Alkylating Anticancer Drugs

2009

Temozolomide and fotemustine, representing methylating and chloroethylating agents, respectively, are used in the treatment of glioma and malignant melanoma. Because chemoresistance of these tumors is a common phenomenon, identification of the underlying mechanisms is needed. Here we show that Rev3L, the catalytic subunit of the translesion DNA polymerase zeta, mediates resistance to both temozolomide and fotemustine. Rev3L knockout cells are hypersensitive to both agents. It is remarkable that cells heterozygous for Rev3L showed an intermediate sensitivity. Rev3L is not involved in the tolerance of the toxic O6-methylguanine lesion. However, a possible role of Rev3L in the tolerance of O6-…

DNA damageApoptosisDNA-Directed DNA PolymeraseBiologyNitrosourea CompoundsCell LineMiceOrganophosphorus CompoundsREV3LTemozolomidemedicineAnimalsAP siteAntineoplastic Agents AlkylatingPolymeraseMice KnockoutPharmacologyTemozolomideBase excision repairFlow CytometryMolecular biologyDNA-Binding ProteinsDacarbazineMicroscopy FluorescenceCancer researchbiology.proteinMolecular MedicineFotemustineDNA mismatch repairDrug Screening Assays AntitumorDNA Damagemedicine.drugMolecular Pharmacology
researchProduct

Modulation of base excision repair of 8-oxoguanine by the nucleotide sequence.

2013

8-Oxoguanine (8-oxoG) is a major product of oxidative DNA damage, which induces replication errors and interferes with transcription. By varying the position of single 8-oxoG in a functional gene and manipulating the nucleotide sequence surrounding the lesion, we found that the degree of transcriptional inhibition is independent of the distance from the transcription start or the localization within the transcribed or the non-transcribed DNA strand. However, it is strongly dependent on the sequence context and also proportional to cellular expression of 8-oxoguanine DNA glycosylase (OGG1)-demonstrating that transcriptional arrest does not take place at unrepaired 8-oxoG and proving a causal…

GuanineBase SequenceDNA RepairTranscription GeneticNucleotidesDNA-binding domainBase excision repairDNABiologyGenome Integrity Repair and ReplicationMolecular biologyDNA GlycosylasesDNA glycosylaseGenes ReporterCoding strandGeneticsDNA supercoilHumansAP siteheterocyclic compoundsNucleotide excision repairTranscription bubbleHeLa CellsNucleic acids research
researchProduct

Expression of yeast but not human apurinic/apyrimidinic endonuclease renders Chinese hamster cells more resistant to DNA damaging agents.

1997

Abasic sites represent ubiquitous DNA lesions that arise spontaneously or are induced by DNA-damaging agents. They block DNA replication and are considered to be cytotoxic and mutagenic. The key enzymes involved in the repair of abasic sites are apurinic/apyrimidinic (AP) endonucleases which process these lesions in an error-free mechanism. To analyze the role of AP endonuclease in the protection of mammalian cells against DNA damaging agents, we have transfected both the human (APE) and the yeast (APN1) AP endonuclease in Chinese hamster cells and compared the effects of expression of these genes in stable transfectants as to survival of cells and formation of chromosomal aberrations. Alth…

Saccharomyces cerevisiae ProteinsDNA RepairDNA repairCell SurvivalBlotting WesternCarbon-Oxygen LyasesChromosome DisordersCHO CellsToxicologyTransfectionAP endonucleaseDNA repair ; Apurinic endonuclease ; cellular defense mechanismschemistry.chemical_compoundCricetinaeGeneticsDNA-(Apurinic or Apyrimidinic Site) LyaseAnimalsHumansAP siteRNA MessengerFluorescent Antibody Technique IndirectMolecular BiologyCell NucleusChromosome AberrationsEndodeoxyribonucleasesbiologyCell DeathfungiNuclear ProteinsBase excision repairHydrogen PeroxideBlotting NorthernMethyl MethanesulfonateMolecular biologyDNA-(apurinic or apyrimidinic site) lyaseDNA Repair EnzymeschemistryGene Expression Regulationbiology.proteinChromosome breakageDNANucleotide excision repairDNA DamagePlasmidsMutation research
researchProduct

Transcriptional activation of apurinic/apyrimidinic endonuclease (Ape, Ref-1) by oxidative stress requires CREB.

1999

Abstract Apurinic/apyrimidinic endonuclease (APE alias Ref-1) is a multifunctional enzyme involved in DNA repair and redox regulation of transcription factors (e.g., AP-1). It also acts as a repressor of its own and other genes. Recently, it was shown that the level of APE mRNA and protein is enhanced upon treatment of cells with oxidative agents, such as hydrogen peroxide (H 2 O 2 ), which gives rise to an adaptive response of cells to oxidative stress. Induction of APE is due to APE promoter activation. To elucidate the mechanism of transcriptional activation of APE by oxidative agents, we introduced mutations into the cloned human APE promoter and checked its activity in transient transf…

Transcription GeneticDNA repairProto-Oncogene Proteins c-junvirusesCarbon-Oxygen LyasesBiophysicsRepressorContext (language use)CHO CellsCREBTransfectionBiochemistryPolymerase Chain ReactionEndonucleasestomatognathic systemCricetinaeDNA-(Apurinic or Apyrimidinic Site) LyaseAnimalsHumansAP siteBinding siteCyclic AMP Response Element-Binding ProteinPromoter Regions GeneticMolecular BiologyTranscription factorBinding SitesbiologyActivating Transcription Factor 2social sciencesCell BiologyHydrogen PeroxideOxidantsMolecular biologybody regionsOxidative Stressbiology.proteinMutagenesis Site-DirectedTranscription FactorsBiochemical and biophysical research communications
researchProduct